Conformation and Stereodynamics of *ortho*-Hydroxy and Ringunsubstituted *N*,*N*-Dialkylbenzamides

W. Brian Jennings,* David Randall, and Barahman Movassagh Saket

Department of Chemistry, The University of Birmingham, P.O. Box 363, Birmingham B15 2TT, U.K.

The non-equivalence of geminal groups in the low temperature n.m.r. spectra of 2-hydroxy-*N*,*N*-dialkylbenzamides and of the *ortho*-carbon atoms in 1-benzoyl-*cis*-3,5-dimethylpiperidine is indicative of a non-coplanar conformation with appreciable barriers (ΔG^{\ddagger} 7—9 kcal mol⁻¹)† to rotation around the aryl–C(O) bond.

Rotation about the C(O)–N bond in amides has been extensively studied by n.m.r. spectroscopy. However, in the case of *ortho*-substituted N,N-dialkylbenzamides, [*e.g.* (1), R = Et; X = Me, NO₂, Cl, F], a second dynamic process has been

 $\dagger 1 \text{ cal} = 4.184 \text{ J}.$

observed which leads to the non-equivalence of geminal methylene protons in prochiral N-alkyl groups at ca. 0 °C.¹⁻³

2-Hydroxybenzamides [(1), X = OH] are anomalous in that they are reported not to show geminal non-equivalence.² Furthermore the C(O)–N rotational barrier is somewhat lower than those of other *ortho*-substituted benzamides,^{2,4} and i.r. spectra indicate a strong intramolecular hydrogen bond. These

observations have led to the suggestion that the formation of a six-membered chelate ring (2),² possibly with quasi-aromatic character,⁴ leads to coplanarity of the aryl ring and the amide moiety.

We now report that some 2-hydroxybenzamides do in fact show geminal non-equivalence at low temperature. Specifically the di-isopropylamino compound (1a)[‡] shows non-equivalent isopropyl groups in the ¹H n.m.r. spectrum (100 MHz) below -40 °C owing to slow rotation around the amide bond $(\Delta G^{\ddagger} 11.8 \text{ kcal mol}^{-1} \text{ at } -38 \text{ °C})$. On further cooling both methyl doublets broaden again and at -110 °C are clearly split by a high field spectrometer (400 MHz) into four signals $(\delta 1.15, 1.23, 1.52, \text{ and } 1.57)$ with approximately equal integrated intensity. This low temperature effect could in principle be due either to a frozen non-coplanar aryl ring (leading to diastereotopic geminal methyl groups) or to restricted rotation around the N-isopropyl bonds. Several examples of restricted N-isopropyl rotation in N.N-diisopropylamides have been reported, but the spectral changes are quite different from those seen here in that two conformers were observed at low temperature with markedly different signal intensities.⁵ Furthermore the analogous ring-unsubstituted benzamide (1b) shows only two methyl doublets (due to the syn-and anti-isopropyl groups) in the 400 MHz ¹H n.m.r. spectrum down to at least -130 °C. Accordingly the evidence is in favour of assigning the low temperature barrier in (1a) $(\Delta G^{\ddagger} 8.8 \text{ kcal mol}^{-1} \text{ at } -90 \degree \text{C})$ to rotation of a non-coplanar aryl ring through the amide plane.

The diethyl and dibenzyl compounds (1c) and (1d) also showed a second dynamic process in the ¹H n.m.r. spectra at very low temperature (-120 to -150 °C), involving geminal anisochronism in one of the NCH₂ groups. Evidently the barrier to aryl-C(O) ring rotation in these less hindered di(primary alkyl)amides (ΔG^{\ddagger} ca. 7.5 kcal mol⁻¹) is appreciably lower than that in the di(secondary alkyl)amide (1a).

The absence of geminal non-equivalence in the low temperature spectra of the ring-unsubstituted compound (1b) does not necessarily imply that the phenyl ring is coplanar with the amide moiety or that rotation through the coplanar conformation ($\phi = 0^\circ$) is always rapid on the n.m.r. time-scale since the orthogonal conformation ($\phi = 90^\circ$) possesses a σ plane containing the prochiral *N*-alkyl groups when X = H.⁶ In order to investigate the situation in ring-unsubstituted benzamides we have prepared compound (3)[‡] which has appropriate stereochemistry to render the *ortho*- (and the *meta*-) protons or carbon atoms diastereotopic even when

Figure 1. 13 C N.m.r. spectrum (aromatic region) of (3) at -95 °C in CHCl₂F solution, recorded at 100.62 MHz.

 $\phi = 90^{\circ}$. At ambient temperature the alkyl resonances of (3) split into syn- and anti-sets due to the normal slow rotation around the amide bond (ΔG^{\ddagger} 15.2 kcal mol⁻¹ at 26 °C). However at much lower temperatures the two most intense signals in the ¹³C n.m.r. spectrum broaden selectively and at -95 °C the upfield ortho-signal' was clearly resolved by a high field spectrometer into two equally intense components (Figure 1). To the best of our knowledge this is the first observation of restricted phenyl rotation in a ring-unsubstituted benzamide, and the barrier (ΔG^{\ddagger} 9.3 kcal mol⁻¹ at -84 °C) to rotation through the amide plane § is appreciable, though as expected on steric grounds it is lower than that in other ortho-substituted benzamides1-3 or ring-unsubstituted thiobenzamides.8 ortho-Hydroxybenzamides are exceptional since the OH - - C=O interaction in the coplanar state is attractive, hence the aryl rotational barrier in (1c) is lower than (3). However the noncoplanarity of (1a-c) and (3) indicates that the repulsive interaction between the ortho-hydrogen atom and the neighbouring NR group is considerable.

We thank Dr O. Howarth and Dr E. Curzon, University of Warwick, for the high-field ¹H and ¹³C n.m.r. spectra, and the S.E.R.C. for an allocation of time on this spectrometer.

Received, 25th January 1982; Com. 076

References

- 1 G. R. Bedford, D. Greatbanks, and D. B. Rogers, Chem. Commun., 1966, 330; ibid., 1967, 144.
- 2 A. H. Lewin and M. Frucht, Tetrahedron Lett., 1970, 1079.
- 3 U. Berg and J. Sandström, Tetrahedron Lett., 1976, 3197.
- 4 M. Hirota and K. Todokoro, Chem. Lett., 1974, 777.
- 5 A. Lidén, C. Roussel, T. Liljefors, M. Chanon, R. E. Carter, J. Metzger, and J. Sandström, J. Am. Chem. Soc., 1976, 98, 2853; and references contained therein.
- W. B. Jennings and M. S. Tolley, *Tetrahedron Lett.*, 1976, 695;
 W. B. Jennings, *Chem. Rev.*, 1975, 75, 307.
- 7 See R. G. Jones and J. M. Wilkins, Org. Magn. Reson., 1978, 11, 20 for ¹³C signal assignment in N,N-dialkylbenzamides.
- 8 U. Berg, Can. J. Chem., 1977, 55, 2297.

[§] The ground state phenyl–C(O) twist angle (ϕ) in (3) is probably somewhat less than 90°. Thus an X-ray crystallographic study of 4-bromo-N,N-dimethylbenzamide, which may be considered to be nearly isosteric with (3), gave ϕ ca. 45° (R.P. Shibaeva, L. O. Atovmyan, and R. G. Kostyanovskii, *Dokl. Akad. Nauk SSSR*, 1967, 175, 586). However oscillation through $\phi = 90^{\circ}$ is expected to be a relatively facile process.